SOFTENG 251 Software Engineering 1
Assignment Two: Digital Simulator

The University of Auckland

September 17, 2002

WORTH: 6.5% towards final mark for course
Due: 9pm, Thursday 19th September 2002 (see Section 7 for bonus details)

1 Introduction

This assignment aims to give you some further experience with object-oriented programming using
a test-first approach. It involves adding extra capability to the Digital Simulator that was covered
in lectures.

2 What you are to do

The assignment is broken into a sequence of stages of varying complexity. Please complete the
assignment in this order, using a Test-Driven Development approach. The marks for each stage
are included with the stage; those marks total 60. See section 6 for general marking details.

You are to provide a complete record of your test-driven development of the assignment, by
retaining a copy of your system at the following times:

e After you've written a test but before it is passed
e After you've passed the test and carried out any necessary refactoring

Save a copy of the folder containing all the files. Name the copies folders according to the Stage
(2 digits) and the step within the Stage (1+ digits). Eg, the folder for the first step for Stage One
will be named “01-1”. The final step you submit is to be in a folder called “assignment2”. The
easiest way to manage this is to do all your development in the folder “assignment2”, and to make
a copy of that folder at each time, as specified above.

Keep a record of how long you spend on each stage (to the nearest 5 minutes) in a spreadsheet,
as outlined in section 5. A statistical summary of the results from all the spreadsheets, and other
results, will be supplied to the class once the assignment has been marked, so you can see the
range and how you compare to others in the class.

Ensure that you follow the directions carefully, because the correctness of your program will be
marked automatically. An acceptance test program will be supplied on the server, which you can
use as a large-scale test of your code. Do not change those acceptance tests. The final marking of
your code may be more comprehensive than those acceptance tests. These tests differ in nature
from unit tests, so they won’t be helpful in driving your design.

3 Help

If you are not sure what’s required at any stage below, check the forum, and/or to email Rick to
ask, by providing a test case and asking whether it will succeed. Received test cases will most

in— Delay(t) | out

Figure 1: Delay Gate

ini

Figure 2: And Gate

probably not be published on the forum — please do not post them there yourself.

If you believe that there is an error in this document or in the acceptance tests, please email
Rick about it as soon as possible. It is quite possible that there are errors - the only means of
seriously testing the tests is to test them against an application. Of course, you may find errors
which are really in your code or which arise because you have misunderstood what was required.

3.1 Stage One: Extract Package [5 marks]

Extract the classes Adgenda, TimedTask and TestAdgenda, along with the Java interface Task into
a package simulate. Make the class TimedTask package-private, as it shouldn’t be visible outside
the simulate package.

All other classes remain outside a package and use the package simulate where necessary.
Check that all the tests still pass.

3.2 Stage Two: Add a Delay gate [5 marks]

Add a class DelayGate, which passes it’s input signal to its output wire after a specified de-
lay. The constructor has arguments as follows: DelayGate(int delay, Wire in, Wire out,
simulate.Agenda agenda).

A DelayGate is shown in Fig. 1.

3.3 Stage Three: AndGate [5 marks]

Add a class AndGate. Its constructor has the same arguments as an OrGate. It has a delay of 6,
and computes the logical and of the inputs to produce the output signal.
An AndGate is shown in Fig. 2.

3.4 Stage Four: Signal Generator [10 marks]

Add a class Generator, which generates a square wave, with a specified cycle time, but only when
the control wire is 1. If the control wire changes to 0, the output goes to 0. The Generator
responds to any change of the control after a delay of 3.

The constructor has arguments as follows: Generator(int cycleTime, Wire control, Wire
out, Agenda agenda). A Generator is shown in Fig. 3.

A sample timing diagram for a generator with a cycle time of 4 is shown in Fig. 4.

control—— Generator (c) |—out

Figure 3: Generator

contrel .—-—.—-—--—L...--..--.......--- I

o . Lo R T

o 1 2 3 4 B & T a8 a

Figure 4: Timing Diagram for Generator

3.5 Stage Five: Nand Composite Gate [5 marks]

Introduce a class CompositeGate, with a static void method nandGate () that takes the same
arguments as the constructor of an OrGate. It builds a Nand gate by wiring together an AndGate
and an Inverter (so it effectively has a delay of 10).

Do not introduce a new class for the Nand gate itself. The class CompositeGate will grow to
include several functions for composing composite gates from elementary ones.

A Nand gate is shown in Fig. 5

3.6 Stage Six: Mux Composite Gate [5 marks]

Add static void method muz () (a multiplexer) to the class CompositeGate. The method argu-
ments are as follows: muz(Wire inl, Wire in0, Wire control, Wire out, Agenda agenda).
When the control signal becomes 1, the in1 signal appears on out after a delay. When the
control signal becomes 0, the 2n0 signal appears on out after a delay. The delays are determined
by the underlying circuit.

A Mux gate is shown in Fig. 6

3.7 Stage Seven: Simultaneous Changes to a Wire [10 marks|

Consider the following test:

public void testTwoChangesAtSameTime() {
new AndGate(inl,in2,out,agenda);
scheduleSignal(inl,1,true);

inl —r

ind

e ————

— AT

Figure 5: Nand Composite Gate

control] |
ini e it
ind

Figure 6: Mux Composite Gate

inl =

in2d =

- CArTy

L

Figure 7: Half Adder

scheduleSignal(in2,2,true);

scheduleSignal (inl1,2,false);

agenda.run() ;

assertEquals("(0,false)",probe.getLog());
}

This fails with the supplied code, giving a log of: ”(0,false)(8,true)(8,false)”. That’s because the
wire signal changes are processed one at a time.

Fix this problem without changing the Probe, and without changing the code of the different
gates.

3.8 Stage Eight: Half Adder and Full Adder [10 marks]

Add static void methods halfAddder() and fullAdder() to the class CompositeGate. The
method arguments are as follows:

o halfAdder(Wire inl, Wire in2, Wire sum, Wire carry, Agenda agenda)
o fullddder(Wire inl, Wire in2, Wire carryIn, Wire sum, Wire carryOut, Agenda agenda)

The Half Adder circuit is as shown in Fig. 7. This makes use of an XOR gate, which is defined
by the circuit shown in Fig. 8.
The Full Adder circuit is shown in Fig. 9.

inl

out
FHD —

out

Figure 8: XOR Composite Gate

]
ini Bl
halfhddar halfAdder
in2
' == carryiut
carryln ll
= —

Figure 9: Full Adder

3.9 Stage Nine: N-bit Adder [5 marks]

Add static void method adderChain() to the class CompositeGate, where the number of
bits of adder are determined by the length of the input and sum arrays. The method argu-
ments are as follows: adderChain(Wirel[] inls, Wire[] in2s, Wire carryln, Wirel[] sums,
Wire carryOut, Agenda agenda). There is a constraint on the arguments that <nls.length ==
in2s.length == sum.length.

A 3-bit adder is composed as shown in Fig. 10.

4 Resources

Files for the Simulator application and the acceptance tests are available on the 251 web page
under Resources.

5 What to Submit

Please submit:

e All the Java source in folders for each of the steps of your assignment (see Section 2 for
details). If a stage is incomplete, ensure that your final program still works for earlier
stages.

e A spreadsheet, saved in comma-separated format (CSV), with the following values:

— Al: your upi

inia[7] —d \
b :ar::.nﬂrut

in2a[2] — fullddder
:\ —— mum[2]
inls[1] —= :

fullidder

inZa1] ——

f—— mum[1]

inis[0] —

in2s[0] == fullidder

sum [0]

carryln —

Figure 10: 3-bit Adder

— A2 B2, C2, D2, E2, F2, G2, H2, 12: the time it took you, in minutes (rounded to
the nearest 5) to complete the test cases and implementation for each of stages One to
Nine. If you have not started a stage, enter 0.

— H2: =sum(A2:G2)

Submit your Java source files and the spreadsheet (CSV) file through the Assignment Drop
Box (ADB) at any time from the first submission date up to the final date. You must be logged
into NetLogin under your own login to use the ADB. Do not hand in a printout of your assignment
for marking. Submit all source files (ie, unchanged, changed and new)

You may resubmit if you find that you have left out a file or made a silly mistake. Bonus-
Penalty marks will be calculated as of the date that you last submitted.

6 Marking

Marks will be given out of 65, awarded as follows:
e Spreadsheet: 5 marks for completing and submitting it
e The 60 marks for each of the stages will be split according to the following proportions:

— Correctness: 60%
— Unit tests: 20%
— Code Quality: 20%
This assignment is to be done by you alone. No marks will be given to students who provide
solution code to others or who accept such code. If you have any doubts as to what counts as

individual work, please read the ” Examinations Regulations” of the university Calendar and the
School of Engineering Handbook and/or see the lecturer.

7 Bonus and Penalty Details

This assignment will not be accepted before Monday 16th September. It will not be accepted
after 9pm, Friday 20th September. Bonuses and Penalties will be calculated as follows for the last
submitted assignment:

By Bonus or Penalty
9pm, Mon 16th September 10% Bonus
9pm, Thu 19th September | No Bonus or Penalty
9pm, Fri 20th September 25% Penalty

