SOFTENG 251 2002 — Digital Simulator

© Rick Mugridge
September 17, 2002

Introduction

This example shows the development of a simulation system that is event-driven. It shows how
to develop such systems using Test Driven Development (TDD)!, and how to build suitable ab-
stractions and modularity. It shows how interfaces, subtypes and inheritance are introduced as a
part of the development process, and hence illustrates design in action. It incorporates a general
approach to simulation, a useful technique for understanding and analysing complex systems.

A digital circuit? consists of one or more gates, such as inverters and and-gates, connected
together with wires. A wire carries a digital signal, either 0 or I. Gates compute their output
signal based on their inputs, after some delay. Such circuits can be used to create abstract gates,
such as for binary addition. This can be done by composing (wiring together) elementary (and
other abstract) gates.

An inverter, an And-gate and an Or-gate are shown in Fig. 1. A half adder circuit is shown
in Fig. 2 and a full adder is shown in Fig. 3.

Step 1. Getting Started (01)

We can set a major goal in our to-do list, and break it down somewhat:

TO DO:
Build a digital circuit simulator
e Simulate the half-adder circuit shown above

It’s often far from easy to decide on the best way to begin, as you may be just starting to
really understand what is required and there may be lots of issues which all seem to interact. So
don’t bite off too much at once. If in doubt, make the first (and subsequent) steps as simple as
possible. If the approach is not working, consider another way.

In this case, we have to deal with wires, several types of gates, delays and propagation of values.
A good place to start is with the parts that seem more straightforward; for example, dealing with
things that are easily modelled as objects, such as wires and gates. How to manage time is less
clear, although we could use the simulation ideas from Bounce.

L Test Driven Development: By Example, Kent Beck, Addison-Wesley November 2002.
2 Structure and Interpretation of Computer Programs, Abelson, Sussman and Sussman, MIT Press, 1996.

- D D

Figure 1: Inverter, And, Or Gates

B 1

B T e e gm g W W

I
1
1
[
\
1
5
]
L]
1
f
a

- W

Figure 2: Half Adder

-]
ini Bl
halfhdder
in2
== carryiut
carryln ll
- — S

Figure 3: Full Adder

We begin with a simplified inverter gate, and wires by writing the first test; it ignores delays

for now. There’s no need to worry about the other types of gates; we can add them in later. That
expands our stack of things to do:

TO DO:
Build a digital circuit simulator

e Simulate the half-adder circuit shown above
e o Simulate an inverter

¢ o Simulate an inverter, ignoring delays
e o o Simulate an inverter with no signal change

In writing the test, we start making design decisions, such as the names of the classes we’ll
use and their initial interfaces (public methods, etc). The first test introduces a class Wire, with
a notion of a boolean signal (getSignal() and setSignal()), and a class Inverter, which takes

two Wires as arguments to the constructor. The interfaces of these classes are sure to change as
we proceed, but the names seem reasonable.

TestSimulator.java (01)

public class TestSimulator extends TestCase {
public static void main(String[] args) {
junit.swingui.TestRunner.run(TestSimulator.class);

}

public TestSimulator (String name) {
super (name) ;

}

public void testInvert1() {
Wire in = new Wire();
in.setSignal (true);
Wire out = new Wire();
Inverter invert = new Inverter(in,out);
assertTrue(!out.getSignal());

We kept it simple by representing a signal value as a boolean.

It took some thinking to write this first test, as I was making several decisions: how to make
the step small enough, what to focus on first, what the class names should be and what their
interfaces should be initially.

Inverter.java (01)

/** An inverter is a boolean NOT, eventually with some delay.
The simplest thing possible to meet the tests.
Q@author rick mugridge, july 2002
*/
public class Inverter {
public Inverter(Wire in, Wire out) {
}
3

We do the simplest thing that will work. Why? Because we don’t want to guess about the future
— we wait until a test drives us to write the code. This may seem trivial here, but it’s a powerful
technique when things are more complex or unclear. The best way to prepare for then is to use
the technique all of the time now.

You should end up with better code — as long as you refactor so that the design of your code
is always explicit and of high quality. Surprisingly, you’ll also go faster over all, because you’ll
spend less time debugging and fixing errors.

Wire.java (01)

/** A Wire passes signals between devices.
The simplest thing possible to meet the tests.
Q@author rick mugridge, july 2002

*/

public class Wire {
public void setSignal(boolean signal) {
}
public boolean getSignal() {

return false;

}
}

Our first test now passes with a green bar!

Notice that we can pass the test quickly by returning false from the method getSignal().
We will generalise the code as our tests drive the development.

Also notice that I don’t have any JavaDoc comments for the two methods here. That’s because
they follow a standard Java approach, of a getter/setter pair for a property called signal. This
notion comes from JavaBeans® (which will be covered at some stage).

Step 2: Invert 0 (02)

public void testInvert0() {
Wire in = new Wire();
Wire out = new Wire();
in.setSignal(false);
Inverter invert = new Inverter(in,out);
assertTrue (out.getSignal());

This step drives the generalisation of Invert, by adding a test case in TestSimulator. java with
an input value of 0.

Why not do this as a part of the first step? We had enough to think about in getting started,
working out the test, the new classes, etc. And it was great to get some quick positive feedback
with a green bar, before moving on to this step.

Inverter.java (02)

public class Inverter {
public Inverter(Wire in, Wire out) {
out.setSignal(!in.getSignal());
}
}

Again, we do no more than necessary to pass the tests (because we want the tests to drive the
development).

3 And before that, Delphi

Wire.java (02)

public class Wire {
private boolean signal = false;

public void setSignal(boolean signal) {
this.signal = signal;

}

public boolean getSignal() {
return signal;

}
}

A green bar again, with two successes! So we can tick off the last item on the to-do list:

TO DO:

Build a digital circuit simulator

e Simulate the half-adder circuit shown above

e ¢ Simulate an inverter

e o Simulate an inverter, ignoring delays

* % * 4/ Simulate an inverter with no signal change

Step 3: Refactor the tests (03)

public class TestSimulator extends TestCase {
public static void main(String[] args) {
junit.swingui.TestRunner.run(TestSimulator.class);

¥

private Wire in, out;

public TestSimulator (String name) {
super (name) ;

}

public void setUp() {
in = new Wire();
out = new Wire();

}

public void testInvert1() {
in.setSignal(true);
Inverter invert = new Inverter(in,out);
assertTrue(!out.getSignal());

}

public void testInvert0() {
in.setSignal(false) ;
Inverter invert = new Inverter(in,out);
assertTrue (out.getSignal());

¥

The tests contained some redundancy, so we used setUp() to initialise common values (Eztract
Method). The tests are just as important as the other code, so we want them to be clean and
clear.

The tests pass. Why did we not initialise the Inverter in setUp() too?

Step 4: Test Two Input Signal Changes (04)

We want to push the refinement of Inverter; it is currently limited because it only changes its
output wire when it is first created. So now we make an input signal change after we have wired
it up.

TO DO:

Build a digital circuit simulator

e Simulate the half-adder circuit shown above

e ¢ Simulate an inverter

e o Simulate an inverter, ignoring delays

* % * 4/ Simulate an inverter with no signal change
e ¢ o Simulate an inverter with signal changes

public class TestSimulator extends TestCase {

public void testInvertiThenO() {
in.setSignal (true);
Inverter invert = new Inverter(in,out);
assertTrue(!out.getSignal());
in.setSignal(false) ;
assertTrue (out.getSignal());

}

You'll get a good nose for picking such steps after a while. It’s good to build skill in this, driving
your understanding by refining examples (tests) to push the current “theory”. It’s related to a
general testing skill — looking for interesting edge cases.

Inverter.java (04)

public class Inverter implements Changelistener {
private Wire in, out;

public Inverter(Wire in, Wire out) {
this.in = in;
this.out = out;
in.addChangelistener(this);

}

public void stateChanged(ChangeEvent ev) {
out.setSignal(!in.getSignal());

}

}

An Inverter has to respond to a change to its input wire at any time.

We used an event-driven approach here, which allows a signal to propagate through the wires
and gates of a circuit. Notice how we minimise the coupling between the gate and the wire here
by having an anonymous object register for notification when the signal value changes; this gives
us good modularity. We follow the Java naming convention of methods for registering listeners,
which keeps it familiar and therefore simple. We use an existing Java listener, as it fits our purpose
well.

There’s a small smell here — an Inverter is a ChangeListener for purely local reasons; this
Java interface and the method stateChanged () shouldn’t really be a part of its public interface.
We expect that only Wire objects will call stateChanged ().

The lastest test fails; that requires a change to Wire, as covered in Step 5.

Step 5: TestWire

As the change to Wire to pass the last test is non-trivial, it makes sense to develop it test-first.

TO DO:

Build a digital circuit simulator

e Simulate the half-adder circuit shown above

e o Simulate an inverter

e o Simulate an inverter, ignoring delays

* % * 4/ Simulate an inverter with no signal change
e o o Simulate an inverter with signal changes

e o o o Wire fires an event on a signal change

This means a delay in satisfying the test added in Step 4 while we write TestWire. We could
either comment out that previous test (and comment out the corresponding change to Inverter),
until we’re ready to satisfy it, or we could just leave it hanging, as a reminder that we need to get
back to it.

This often occurs during test-first development: you write some code that needs
some more detailed code elsewhere. I prefer to develop code inwards, which often
means having some tests unsatisfied while you get another part working. I’'m happy
if a small number of tests are failing while I work on another part. Kent Beck prefers
to comment out those tests so that he gets a green bar at each step; he uses the to-do
list to keep track of what he’s got to do®.

I didn’t include this intermediate step initially, because I expected to succeed with
all of this in one step — I have introduced such listeners many times before. But there’s
no point in taking bigger steps if you’re not sure what you’re doing and don’t expect
to succeed. Experiment with the size of your steps and see how small you can make
them if you need to.

4 Test Driven Development: By Ezample, Kent Beck, Addison-Wesley November 2002.

TestWire.java (05)

public class TestWire extends TestCase {
public static void main(String[] args) {
junit.swingui.TestRunner.run(TestWire.class);

¥

public TestWire(String name) {
super (name) ;
}

int calls = 0;

public void testEventFired() {
Wire wire = new Wire();
wire.addChangeListener (new ChangeListener() {
public void stateChanged(ChangeEvent ev) {
calls++;
}
s
assertEquals(1,calls);
wire.setSignal(true);
assertEquals(2,calls);
wire.setSignal(true); // Should have no affect
assertEquals(2,calls);

¥

Notice how we embed the ChangeListener within the TestCase. If we had more than one test,
we’d need to use setUp() to initialise the instance variable calls to zero.

The Wire fires an event as soon as a listener is registered with it, so that the listener can
update its state according to the current state of the wire.

Wire.java (05)

public class Wire {
private boolean signal = false;
private List listeners = new ArrayList();

public void setSignal(boolean signal) {
boolean changed = this.signal != signal;
this.signal = signal;
if (changed)
fireEvent();
}
protected void fireEvent() {
ChangeEvent event = new ChangeEvent (this);
for (Iterator it = listeners.iterator(); it.hasNext();)
((ChangeListener)it.next()).stateChanged(event) ;
}
public boolean getSignal() {
return signal;
}
public void addChangeListener(ChangeListener cl) {
listeners.add(cl);
cl.stateChanged(new ChangeEvent (this));
}
public void removeChangelListener(ChangeListener cl) {
listeners.remove(cl);
}
}

As aWire fires Changeevents, we followed the Java tradition of providing the methods addXXListener ()
and removeXXListener () for a listener named XXListener with corresponding event XXEvent.

Now that the test in TestWire works, we can check that all the tests in TestSimulator now
work; they do. With running the two tests, we have two green bars with 3 and 1 successes.

TestAll.java (05)

public static void main(String[] args) {
junit.swingui.TestRunner.run(TestAll.class);

¥

public static Test suite() {

TestSuite suite = new TestSuite("All Tests");
suite.addTestSuite(TestWire.class);
suite.addTestSuite(TestSimulator.class);

return suite;

}

As we’ve now got more than one test file, it will be handy to run them both at once. So we

introduced a class TestAll:

So running that, we now have a green bars with 4 successes.

Step 6. Modelling Time

So we can now simulate an inverter, ignoring time delays. Next, let’s handle a sequence of changes
to the inputs of a gate. So we need to capture that history in some way, to check that things

occurred in the correct order.

To make the first step towards that, we introduce a Probe, that can be placed on a Wire to
record changes. Initially, it just reports the current state of the wire. That’s an easy step.

We’ll change our tests to use a Probe.

TO DO:

Build a digital circuit simulator

e Simulate the half-adder circuit shown above
ee Simulate an inverter

* % 1/ Simulate an inverter, ignoring delays

* % %/ Simulate an inverter with no signal change
* % %/ Simulate an inverter with signal changes
* % % x / Wire fires an event on a signal change
ee Simulate an inverter with explicit time delays
e ¢ o Introduce a current-state Probe

e o ¢ Probe records history

10

TestSimulator.java (06)

public class TestSimulator extends TestCase {

private Wire in, out;
private Probe probe;

public void setUp() {
in = new Wire();
out = new Wire();
probe = new Probe(out);

}

public void testInvert1Then0() {
in.setSignal(true);
Inverter invert = new Inverter(in,out);
assertTrue(!probe.getSignal());
in.setSignal (false);
assertTrue(probe.getSignal());

¥

The other tests are changed similarly.

Probe.java (06)

/** A probe listens to the input wire, to record its state.
At this stage, it can just refer to the wire for its state.
Q@author rick mugridge, july 2002
*/
public class Probe {
private Wire in;

public Probe(Wire in) {
this.in = in;
}
public boolean getSignal() {
return in.getSignal();
}
}

Back to a green bar again, with 4 successes.

11

Step 7: Probe Log in TestSimulator.java

We now want to record the history of the wire that the probe is on. We use a standard trick:
record the history in a String®.

We also need to be clear about the state of a wire initially, so we add another test. This
prompts me to create the Inverter in the setUp() too. (Note that the order of wiring things up
impacts on the Probe result.)

public class TestSimulator extends TestCase {
private Wire in, out;
private Probe probe;
private Inverter invert;

public void setUp() {
in = new Wire();
out = new Wire();
invert = new Inverter(in,out);
probe = new Probe(out);
}
public void testInvertInitial() {
assertEquals (" (true)",probe.getLog());
}
public void testInvertO0() {
in.setSignal(false);
assertEquals (" (true)",probe.getLog());
}
public void testInvert1() {
in.setSignal (true);
assertEquals (" (true) (false)",probe.getLog());
}
public void testInvertiThenO() {
in.setSignal(true);
in.setSignal(false) ;
assertEquals (" (true) (false) (true)",probe.getLog());

5As we did with Bounce

12

Probe.java (07)

Add a log capability to the probe.

public class Probe implements ChangelListener {
private Wire in;
private String log = "";

public Probe(Wire in) {
this.in = in;
in.addChangelListener(this);

}

public String getLog() {
return log;

}

public void stateChanged(ChangeEvent ev) {
log += "("+in.getSignal()+")";

}

}

A green bar with 5 successes. We’ve making progress.

Step 8: Delays

It’s not obvious how to proceed, so we look for a small step®. We need to add new tests to drive
the development in small steps, without having to guess what’s required.

Let’s now incorporate delays in an inverted gate. We assume that an inverter has a delay of
4. A wire and a probe have no delay. This requires little changes to most of the classes.

TO DO:

Build a digital circuit simulator

e Simulate the half-adder circuit shown above
ee Simulate an inverter

* % 4/ Simulate an inverter, ignoring delays

ee Simulate an inverter with explicit time delays
* % %/ Introduce a current-state Probe

* % %/ Probe records history

e o ¢ Probe records time delays in history

61 actually tried a way from here that didn’t drive the development so well, so I backtracked. I started on an
agenda for the simulator, before knowing exactly what was required of it. The agenda is now developed in Step 12!

13

oul”

probe

Figure 4: Inverter Circuit

public class TestSimulator extends TestCase {

public void setUp() {
in = new Wire();
out = new Wire();
probe = new Probe(out);
invert = new Inverter(in,out);
}
public void testInvertInitial() {
assertEquals("(0,false) (4,true)",probe.log());
}
public void testInvert0() {
in.setSignal(0,false);
assertEquals (" (0,false) (4,true)",probe.log());
}
public void testInvert1() { // Invert delay is 4
in.setSignal(5,true);
assertEquals (" (0,false) (4,true) (9,false)",probe.log());
}
public void testInvertiThenO() { // Invert delay is 4
in.setSignal(5,true);
in.setSignal(13,false);
assertEquals("(0,false) (4,true) (9,false) (17,true)" ,probe.log());
}

The inverter used in TestSimulator is shown in Fig. 4.

This involves an important design decision — to pass the time into setSignal()”. Now a signal
is changed at a particular (simulation) time. A probe log now includes the time that the signal
state changed.

It’s clearer to put the probe on the out wire before wiring in the inverter.

The timing diagram for testInvert1ThenO is shown in Fig. 5.

"In retrospect, this decision made it easier to understand the program later.

14

Figure 5: Inverter Timing

Wire.java (08)

public class Wire {
private boolean signal = false;
private List listeners = new ArrayList();

public void setSignal(int time, boolean signal) {
boolean changed = this.signal != signal;
this.signal = signal;
if (changed)
fireEvent (time) ;
}
protected void fireEvent(int time) {
SignalChangeEvent event = new SignalChangeEvent(this,time);
for (Iterator it = listeners.iterator(); it.hasNext();)
((SignalChangelListener)it.next()).signalChanged(event) ;
}
public boolean getSignal() {
return signal;
}
/** Assumes all wiring is made at time 0 */
public void addSignalChangeListener (SignalChangelListener scl) {
listeners.add(scl);
scl.signalChanged(new SignalChangeEvent (this,0));
}
public void removeSignalChangelistener(SignalChangeListener scl) {
listeners.remove(scl);
}
}

The method setSignal () is changed to include the time parameter. Because we want the simula-
tion time passed when changes are propagated, we introduce a new event, a SignalChangeEvent,
with associated listener.

15

SignalChange (08)

/** Provides timing information when a signal is changed.
Q@author rick mugridge july 2002
*/
public class SignalChangeEvent extends java.util.EventObject {
private int time = O;
public SignalChangeEvent(Object source, int time) {
super (source) ;
this.time = time;
3
public int getTime() {
return time;
}
3

public interface SignalChangelistener extends java.util.EventListener {
public void signalChanged(SignalChangeEvent ev) ;
X

Inverter.java (08)

An Inverter now has a delay of 4.

public class Inverter implements SignalChangelListener {
private static int DELAY = 4;
private Wire in, out;

public Inverter (Wire in, Wire out) {
this.in = in;
this.out = out;
in.addSignalChangeListener (this);
}
public void signalChanged(SignalChangeEvent ev) {
out.setSignal (ev.getTime () +DELAY, !in.getSignal());
}

16

Probe.java (08)

/** A probe listens to the input wire, to record its state.
It records a timed-based log of signal changes.
Q@author rick mugridge, july 2002
*/
public class Probe implements SignalChangelListener {
private Wire in;
private String log = "";

public Probe(Wire in) {
this.in = in;
in.addSignalChangelListener(this);

}

public String log() {
return log;

}

public void signalChanged(SignalChangeEvent ev) {
log += "("+ev.getTime () +","+in.getSignal ()+")";

}

}

A green bar again, with five successes.

That step introduced a lot of changes, due to the time being passed when a signal change
was propagated. Such “plumbing” or “wiring” changes to the code are common when evolving
programs (regardless of the programming language used).

17

ml s o o
mZ

Figure 6: linl or in2 Circuit

nL u_'!
L |

out -

Figure 7: Required Timing for circuit linl or in2

Step 9. Or Gate

We have been able to simply propagate times immediately, so far, because we have a single chain.
A good next step is to introduce a circuit that doesn’t work properly with this approach. We need
a gate with two inputs, such as an OR-gate, so that we can have two separate paths to the same
wire, with the first path “longer”.

The circuit shown in Fig. 6 is for (linl or in2). The required timing is shown in Fig. 7.
Expected timing for this circuit (given the implementation as at Step 8) is shown in Fig. 8.

We first develop the OR-gate:

TO DO:

Build a digital circuit simulator

e Simulate the half-adder circuit shown above

ee Simulate an inverter

* % 1/ Simulate an inverter with explicit time delays

* % %/ Introduce a current-state Probe

* % %/ Probe records history

* % xy/ Probe records time delays in history

ee A circuit with two paths to a wire (first path longer)
e o o Simulate an OR-gate

The class TestSimulator was actually just testing inverters. Tests for OR gates don’t fit well
with the setUp(), so it’s time for a change. We rename TestSimulator to be TestInverter and

inZ ;—Il
wt! - y
ol [

0 q

=

Figure 8: Expected Timing (as of Step 8) for circuit linl or in2

18

in ot
pudkoe

Figure 9: Or Test Circuit

inl

s B
_—

i

P SN | 1

Figure 10: Timing for Or Test Circuit

introduce a new test class, TestOrGate.
The test circuit is shown in Fig. 9 and its timing diagram is shown in Fig. 10..

TestOrGate.java (09)

public class TestOrGate extends TestCase {
public static void main(String[] args) {
junit.swingui.TestRunner.run(TestOrGate.class);

}

public TestOrGate(String name) {
super (name) ;

}

public void testOrGate() { // Or-gate delay is 5
Wire out = new Wire();
Probe probe = new Probe(out);
Wire inl = new Wire();
Wire in2 = new Wire();
new OrGate(inl,in2,out);
inl.setSignal(0,true);
in2.setSignal (0,true);
in2.setSignal(7,false);
inl.setSignal(12,false);
assertEquals("(0,false) (5,true) (17,false)",probe.getLog());

19

OrGate.java (09)

public class OrGate implements SignalChangelListener {
private static int DELAY = 5;
private Wire inl, in2, out;

public OrGate(Wire inl, Wire in2, Wire out) {
this.inl = inl;
this.in2 = in2;
this.out = out;
inl.addSignalChangelListener (this);
in2.addSignalChangelListener (this);

}

public void signalChanged(SignalChangeEvent ev) {

out.setSignal(ev.getTime () +DELAY,inl.getSignal() || in2.getSignal());
}
}

A green bar with 7 successes.

20

ml s o o
mZ

Figure 11: linl or in2 Circuit

Step 10. Circuit with two paths

So now we can build the circuit shown in Fig. 11. We add the test into TestOrGate because it
fits easily; that means refactoring that class.

TestOrGate.java (10)

public class TestOrGate extends TestCase {
public static void main(String[] args) {
junit.swingui.TestRunner.run(TestOrGate.class);
3
private Wire inl, in2, out;
private Probe probe;

public TestOrGate(String name) {
super (name) ;
}
public void setUp() {
out = new Wire();
probe = new Probe(out);
inl = new Wire();
in2 = new Wire();
}
public void testOrGate() { // Or-gate delay is 5
new OrGate(inl,in2,out);
inl.setSignal(0,true);
in2.setSignal (0, true);
in2.setSignal (7,false);
inl.setSignal(12,false);
assertEquals("(0,false) (5,true) (17,false)",probe.getlLog());
}
public void testOrGateWithInverter() { // Or-gate delay is 5
// We need to wire it up backwards, so that gates haven’t already acted
Wire notl = new Wire();
new OrGate(notl,in2,out);
new Inverter(inl,notl);
in2.setSignal(1,true);
assertEquals("(0,false) (6,true)",probe.getLog());

}
The new test is valid, but it fails, giving “(0,false)(9,true)” instead of “(0,false)(6,true)”.

It’s because the signal propagation through the inverter is calculated immediately. The wire
notl is set to 1 at time 4 (due to the inverter) and then the wire out given the value 1 at time 9

21

(due to the Or gate). Then the wire in2 is changed at time 1, causing the Or gate to recalculate
its output — which remains unchanged. See p?? for the timing diagrams.

The changes are propagated immediately, rather than in proper (simulation time) sequence.
Hence we have a good test to drive the development further.

Step 11: Introduce Agenda

We need a way of scheduling time - the role of a simulator. So let’s introduce an Agenda, which
keeps track of the tasks that need to be done and when.

That means changing the gates so that they can add a Task to the Agenda to schedule the
propagation of the signals with delays. So we need to pass them an Agenda. So let’s first change
the tests to incorporate the Agenda.

TO DO:

Build a digital circuit simulator

e Simulate the half-adder circuit shown above

* % 4/ Simulate an inverter

ee A circuit with two paths to a wire (first path longer)
* % %,/ Simulate an OR-gate

e ¢ o Agenda schedules event propagation

e ¢ oe Agenda passed to gates

22

TestOrGate.java (11)

public class TestOrGate extends TestCase {

}

public static void main(String[] args) {
junit.swingui.TestRunner.run(TestOrGate.class);

X

private Wire inl, in2, out;

private Probe probe;

private Agenda agenda;

public TestOrGate(String name) {
super (name) ;
}
public void setUp() {
agenda = new Agenda();
out = new Wire();
probe = new Probe(out);
inl = new Wire();
in2 = new Wire();
}
public void testOrGate() { // Or-gate delay is 5
new OrGate(inl,in2,out,agenda);
inl.setSignal(0,true);
in2.setSignal (0,true);
in2.setSignal (7,false);
inl.setSignal(12,false);
agenda.run() ;
assertEquals("(0,false) (5,true) (17,false)",probe.getlLog());
}
public void testOrGateWithInverter() { // Or-gate delay is 5
// We need to wire it up backwards, so that gates haven’t already acted
Wire notl = new Wire();
new OrGate(notl,in2,out,agenda);
new Inverter(inl,notl,agenda);
agenda.run() ;
in2.setSignal(1,true);
assertEquals("(0,false) (6,true)",probe.getLog()) ;

That’s only some of the code, to show the addition of the Agenda.

23

Inverter.java (11)

public class Inverter implements SignalChangelistener, Task {
private Agenda agenda;
private static int DELAY = 4;
private Wire in, out;

public Inverter(Wire in, Wire out, Agenda agenda) {
this.in = in;
this.out = out;
this.agenda = agenda;
in.addSignalChangelListener(this);

}

public void signalChanged(SignalChangeEvent ev) {
agenda.schedule(ev.getTime ()+DELAY,this);

}

public void run(int time) {
out.setSignal (time, !in.getSignal());

}

}

When an input signal changes for the Inverter, it schedules a task with the Agenda to run later.
The Agenda calls the method run() of the interface Task once the delay is up.

Notice that the output is computed based on the value of the signal of the input wire that
exists at the end of the delay. That’s clearly wrong, so we need to add an item to our to-do list:
“Output of gate depends on input values before delay”. We don’t try and fix the code immediately
— if we did, how would we know that we got it right? And we don’t want to add a new test at
this stage, when we still have a failing test.

24

OrGate.java (11)

public class OrGate implements SignalChangelistener, Task {
private static int DELAY = 5;
private Wire inl, in2, out;
private Agenda agenda;

public OrGate(Wire inl, Wire in2, Wire out, Agenda agenda) {
this.inl = inl;
this.in2 = in2;
this.out = out;
this.agenda = agenda;
inl.addSignalChangeListener (this);
in2.addSignalChangelListener (this);

}

public void signalChanged(SignalChangeEvent ev) {
agenda.schedule(ev.getTime ()+DELAY,this);

}

public void run(int time) {
out.setSignal(time,inl.getSignal() || in2.getSignal());

}

}

This is changed in the same way as the Inverter. It has the same smell, of advertising the gate as
a SignalChangeListener, when that’s only relevant to it responding to wire signal changes, and
as a Task, when that’s only relevant to it handling the run(). Notice also that there is common
code between the OrGate and Inverter classes.

We’ll add those to our to-do list: “Gates share code” and “Gates shouldn’t advertise extra
interfaces” .

25

Agenda.java and Task.java (11)

/** Manages the scheduling of Tasks in the simulation.
For now, we’ll just run them immediately.
Q@author rick mugridge july 2002

*/

public class Agenda {
public void schedule(int time, Task task) {

task.run(time) ;
}
public void run() {
}
}

/** A Task is scheduled to run at a certain time.
Qauthor rick mugridge july 2002

*/

public interface Task {
public void run(int time);

¥

Notice how we managed to do the least possible by simply having the Agenda run the Task
immediately. This allows us to check that 7 of our 8 tests pass — the last one was already failing.
So now we’ve worked out the interface to Agenda; we can develop it properly.

Step 12. Agenda

We’ve sorted out the interface to Agenda, so now it’s time to develop it test-first. An Agenda keeps
track of the current time, and a list of tasks in time order. The simulation gets the first task from
the agenda and carries it out. This may led to new tasks being added.

TO DO:

Build a digital circuit simulator

e Simulate the half-adder circuit shown above

* % 4/ Simulate an inverter

ee A circuit with two paths to a wire (first path longer)
* % xy/ Simulate an OR-gate

e ¢ o Agenda schedules event propagation

* % % * / Agenda passed to gates

e ¢ oe Agenda runs Task

e Gates share code
e Gates shouldn’t advertise extra interfaces
e Output of gate depends on input values before delay

26

Test Agenda.java (12)

public class TestAgenda extends TestCase {
public static void main(String[] args) {
junit.swingui.TestRunner.run(TestAgenda.class);

}
private String taskLog;

public TestAgenda(String name) {
super (name) ;
}
public void testOneTask() {
taskLog = "";
Agenda agenda = new Agenda();
agenda.schedule(12, new Task(){
public void run(int time) {
taskLog += "("+time+")";
}
B
agenda.run();
assertEquals("(12)",taskLog);

}

As expected, we immediately get a green bar with 1 success with TestAgenda. TestAll still has
1 fail, also as expected.

27

Step 13: Schedule two tasks out of order

public class TestAgenda extends TestCase {
public static void main(String[] args) {
junit.swingui.TestRunner.run(TestAgenda.class);

}

private String taskLog;
private Agenda agenda;

public TestAgenda(String name) {

super (name) ;
}
public void setUp() {
taskLog = "";
agenda = new Agenda();
}

public void testOneTask() {
agenda.schedule(12, new MockTask("A"));
agenda.run() ;
assertEquals (" (12,A)",taskLog) ;
}
public void testTwoTasksOutOfOrder() {
agenda.schedule(15, new MockTask("B"));
agenda.schedule(12, new MockTask("A"));
agenda.run() ;
assertEquals("(12,A) (15,B)",taskLog) ;
}
private class MockTask implements Task {
String name;
public MockTask(String name) {
this.name = name;
}
public void run(int time) {
taskLog += "("+time+","+name+")";

}

}

As usual, we proceed in small steps. Here we add two tasks out of time order to drive the
development of class Agenda.

Notice how we get the benefit here of defining the general interface Task. The Agenda is
completely independent of gates, wires, etc. This means that we can test it separately and we can
reuse it more easily. Modularity is a great thing!

To avoid repetition, we use a setUp() and introduce a MockTask. We run the test and check
that it fails, as expected.

28

Test Agenda.java (13B)

So now we need a way of keeping a time-ordered list of tasks. We could keep the tasks in a list,
along with their times. A better approach would be to use an ordered tree. Looking through the
Java, Collection classes, the best one looks to be TreeSet, but that requires the elements to be
unique, as well as Comparable.

So we need to develop a class to hold the time-task pair, where each object is unique and they
can be compared. What’s the best way of developing that? Test-first, of course. So let’s comment
out that last test for now and add a test for class TimedTask in TestAgenda:

/* public void testTwoTasksOut0fOrder() {
agenda.schedule(15,new MockTask("B"));
agenda.schedule(12,new MockTask("A"));
agenda.run() ;
assertEquals("(12,A) (15,B)",taskLog) ;

*/
public void testTimedTask() {
TimedTask ttl = new TimedTask(12,new MockTask("A"));
TimedTask tt2 = new TimedTask(13,new MockTask("B"));
assertTrue(ttl.compareTo(tt2) < 0);
assertTrue (tt2.compareTo(ttl) > 0);

TimedTask.java (13B)

public class TimedTask implements Comparable {
private final int time;
private final Task task;

public TimedTask(int time, Task task) {
this.time = time;
this.task = task;

}

public int compareTo(Object other) {
TimedTask that = (TimedTask)other;
return this.time - that.time;

29

Test Agenda.java (13C)

And now we want to ensure that two tasks that are scheduled at the same time are not equal
(otherwise, only one will end up in the TreeSet).

public void testTimedTasksUnique() {
TimedTask ttl = new TimedTask(12,new MockTask("A"));
TimedTask tt2 = new TimedTask(12,new MockTask("A"));
assertTrue(ttl.compareTo(tt2) != 0);

TimedTask.java (13C)

public class TimedTask implements Comparable {
private final int time;
private final Task task;
private static int COUNT = O;
private int id = COUNT++;

public TimedTask(int time, Task task) {
this.time = time;
this.task = task;
}
public int compareTo(Object other) {
TimedTask that = (TimedTask)other;
if (time == that.time)
return id - that.id;
else
return this.time - that.time;

30

Test Agenda.java (13D)

And now we check TimedTasks with a TreeSet:

public void testTimedTasksInTreeSet() {
TimedTask ttl = new TimedTask(12,new MockTask("A"));
TimedTask tt2 = new TimedTask(12,new MockTask("A"));
TreeSet set = new TreeSet();
set.add(tt2);
set.add(ttl);
assertEquals(ttl,set.first());
set.remove(ttl);
assertEquals(tt2,set.first());
set.remove(tt2);
assertTrue(set.isEmpty());

Agenda.java (13E)
So now we can uncomment that test in TestAgenda and satisfy it:

public class Agenda {
private SortedSet tasks = new TreeSet();

public void schedule(int time, Task task) {
tasks.add(new TimedTask(time,task));
}
public void run() {
while (!tasks.isEmpty()) {
TimedTask timedTask = (TimedTask)tasks.first();
tasks.remove (timedTask) ;
timedTask.run();

¥

Can this result in an infinite loop? Yes, if a task keeps adding itself to the agenda.

31

TimedTask.java (13E)

Finally, we need to add a run() method here:

public class TimedTask implements Comparable {
private final int time;
private final Task task;
private static int COUNT = O;
private int id = COUNT++;

public TimedTask(int time, Task task) {
this.time = time;
this.task = task;
}
public int compareTo(0Object other) {
TimedTask that = (TimedTask)other;
if (time == that.time)
return id - that.id;
else
return this.time - that.time;
}
public void run() {
task.run(time) ;

}
}

So we finally have the 5 tests in TestAgenda all passing. But TestAll now has four failures.

32

Step 14. Update Other Tests

The change to method schedule() in class Agenda breaks five of the tests in TestInverter and
TestOrGate. That’s because we’d assumed that we can change an input signal in-line, but now
they need to be scheduled.

TO DO:

Build a digital circuit simulator

e Simulate the half-adder circuit shown above

* % 4/ Simulate an inverter

ee A circuit with two paths to a wire (first path longer)

* % xy/ Agenda schedules event propagation

* % % % 1/ Agenda passed to gates

* % * x4/ Agenda runs Task

e o o Older tests failing — schedule input changes

e e o Output of gate depends on input values before delay

e Gates share code
e Gates shouldn’t advertise extra interfaces

TestOrGate.java (14)

We'll do it with scheduleSignal().

public class TestOrGate extends TestCase {
public static void main(String[] args) {
junit.swingui.TestRunner.run(TestOrGate.class);
}
private Wire inl, in2, out;
private Probe probe;
private Agenda agenda;

public TestOrGate(String name) {
super (name) ;
}
public void setUp() {
agenda = new Agenda();
out = new Wire();
probe = new Probe(out);
inl = new Wire();
in2 = new Wire();
}
public void testOrGate() { // Or-gate delay is 5
new OrGate(inl,in2,out,agenda);
scheduleSignal(inl,0,true);
scheduleSignal(in2,0,true);
scheduleSignal (in2,7,false);
scheduleSignal(inl,12,false);
agenda.run() ;
assertEquals("(0,false) (5,true) (17,false)",probe.getLog());
}
public void testOrGateWithInverter() { // Or-gate delay is 5
// We need to wire it up backwards, so that gates haven’t already acted
Wire notl = new Wire();

33

new OrGate(notl,in2,out,agenda) ;
new Inverter(ini,notl,agenda);
scheduleSignal (in2,1,true);
agenda.run() ;
assertEquals("(0,false) (6,true)",probe.getLog());
}
private void scheduleSignal(Wire wire, int time, boolean value) {
agenda.schedule(time,new WireChangeTask(wire,value));

}

WireChangeTask.java (14)

public class WireChangeTask implements Task {
private Wire wire;
private boolean value;

WireChangeTask(Wire wire, boolean value) {
this.wire = wire;
this.value = value;

}

public void run(int time) {
wire.setSignal (time,value);

}
}

Two of the tests still fail. It looks like it’s because of the gates computing their output based on
their input values after the delay.

34

TestInverter.java (14)

So let’s write a simple test that will check whether it is the already-identified problem with the
output value of the gate being determined by the values of the inputs after the delay rather than
before:

public void testInvertQuickly() { // Inverter delay is 4
scheduleSignal(in,1,true);
agenda.run() ;
assertEquals (" (0,false) (4,true) (5,false)",probe.getLog());
}

The result log of “(0,false)” seems to confirm it. When the in wire changed the gate would’ve
scheduled a task to update the output. After the gate’s delay (at time = 4), it appears to have
calculated the output (to out wire) based on an in signal of 1 rather than of signal of 0. Hence
the out wire’s signal is unchanged. So now that we have a clear, failing test, we can update class
Inverter:

Inverter.java (14)

private Agenda agenda;
private static int DELAY = 4;
private Wire in, out;

public Inverter(Wire in, Wire out, Agenda agenda) {
this.in = in;
this.out = out;
this.agenda = agenda;
in.addSignalChangeListener (this);
3
public void signalChanged(SignalChangeEvent ev) {
agenda.schedule(ev.getTime ()+DELAY,
new WireChangeTask(out,!in.getSignal()));

¥

So the above test (testInvertQuickly()) now passes. Let’s do the same for Or gates. First, we’ll
write a simple confirming test:

35

TestOrGate.java (14)

public void testOrQuickly() { // Or-gate delay is 5
scheduleSignal(inl,1,true);
scheduleSignal(inl,2,false);
agenda.run();
assertEquals (" (0,false) (6,true) (7,false)",probe.getLog());
}

As expected, given the current implementation of OrGate, the result is “(0,false)”. After the gate’s
delay (at time = 5), it appears to have calculated the output (to out wire) based on an in signal
of 0 rather than of signal of 1 (and hence the out wire’s signal is unchanged).

Notice the common code between the tests creeping in here, which we need to refactor out;
we’ll add that to our to-do list.

OrGate.java (14)

public class OrGate implements SignalChangeListener {
private static int DELAY = 5;
private Wire inl, in2, out;
private Agenda agenda;

public OrGate(Wire inl, Wire in2, Wire out, Agenda agenda) {
this.inl = inl;
this.in2 = in2;
this.out = out;
this.agenda = agenda;
inl.addSignalChangeListener (this);
in2.addSignalChangelistener (this);
}
public void signalChanged(SignalChangeEvent ev) {
agenda.schedule(ev.getTime ()+DELAY,
new WireChangeTask(out,inl.getSignal() || in2.getSignal()));

¥

So we expect that change to pass the test testOrQuickly (), but it doesn’t! What’s going wrong?
After a few minutes, I discover that the test is wrong — it needs to create an OrGate.

36

TestOrGate.java (14B)

public void testOrQuickly() { // Or-gate delay is 5
new OrGate(inl,in2,out,agenda);
scheduleSignal(inl,1,true);
scheduleSignal(inl,2,false);
agenda.run() ;
assertEquals (" (0,false) (6,true) (7,false)",probe.getLog());
}

Yes, that’s the problem,. So we now have a green bar with 15 successes.

Step 15. Refactor Gates

TO DO:

Build a digital circuit simulator

e Simulate the half-adder circuit shown above

x %/ A circuit with two paths to a wire (first path longer)
* % *y/ Agenda schedules event propagation

* % *y/ Older tests failing — schedule input changes

* % xy/ Output of gate depends on input values before delay
ee GGates share code

ee Gates shouldn’t advertise extra interfaces

oo Tests share code

37

Gate.java (15)

public abstract class Gate {
protected final Wire in;
private final Wire out;
private final Agenda agenda;
private final int delay;
private final Handler handler = new Handler();

public Gate(Wire in, Wire out, Agenda agenda, int delay) {
this.in = in;
this.out = out;
this.agenda = agenda;
this.delay = delay;

}

protected void registerWithWire(Wire wire) {
wire.addSignalChangelListener (handler);

}

protected abstract boolean getOutSignal();

class Handler implements SignalChangeListener {
public void signalChanged(SignalChangeEvent ev) {
agenda.schedule(ev.getTime()+delay,
new WireChangeTask(out,getOutSignal()));

Inverter.java (15)

public class Inverter extends Gate {
private final static int DELAY = 4;

public Inverter(Wire in, Wire out, Agenda agenda) {
super (in,out,agenda,DELAY) ;
registerWithWire(in);

}

protected boolean getOutSignal() {
return !in.getSignal();

¥

38

OrGate.java (15)

public class OrGate extends Gate {
private final static int DELAY = 5;
private final Wire in2;

public OrGate(Wire inl, Wire in2, Wire out, Agenda agenda) {
super (inl,out,agenda,DELAY) ;
this.in2 = in2;
registerWithWire(in);
registerWithWire(in2);
}
protected boolean getOutSignal() {
return in.getSignal() || in2.getSignal();

}
}

After this refactoring the tests still all pass. Let’s now refactor the tests, by extracting a common
superclass of TestInverter and TestOrGate.

DigitalTestCase.java (15)

public abstract class DigitalTestCase extends TestCase {
protected Wire out;
protected Probe probe;
protected Agenda agenda;

public DigitalTestCase(String name) {
super (name) ;
}
public void setUp() {
agenda = new Agenda();
out = new Wire();
probe = new Probe(out);
}
protected void scheduleSignal(Wire wire, int time, boolean value) {
agenda.schedule(time,new WireChangeTask(wire,value));

}

39

TestInverter.java (15)

public class TestInverter extends DigitalTestCase {
public static void main(String[] args) {
junit.swingui.TestRunner.run(TestInverter.class);
X
private Wire in;
private Inverter invert;

public TestInverter(String name) {
super (name) ;
}
public void setUp() {
super.setUp();
in = new Wire();
invert = new Inverter(in,out,agenda);

And the tests all pass again.

Conclusion

So we are well underway in the development of the digital simulation. We can tick off what’s been
done and plan the next step:

TO DO:

Build a digital circuit simulator

¢ Simulate the half-adder circuit shown above

x %4/ A circuit with two paths to a wire (first path longer)
* % 4/ Gates share code

* % 4/ Gates shouldn’t advertise extra interfaces

x % 4/ Tests share code

We’ve also seen how tests can be designed to drive the development of a program. It’s not always
easy to choose the next step, to decide what’s a good move, and then to write a good test. But
our efforts led us to clarity and correctness, and the tests leave a legacy for ensuring that things
don’t break as we evolve the program further.

In time to come, programmers will wonder how high-quality programs could have been devel-
oped without using this approach. Just as today we wonder how programmers managed in the
past with goto’s and without for-loops and parameter passing (ie, pre-”’structured programming”),
and object-oriented programming.

40

